

RAPPORT D'ANALYSE

N° 1- 0618
PORTEE
disponible sur

Rapport d'analyse

Page 1 / 10

Edité le : 18/09/2023

Mairie Divonne les Bains

73 Avenue des Thermes 01220 DIVONNE LES BAINS

Le rapport établi ne concerne que les échantillons soumis à l'essai. Il comporte 10 pages.

Le COFRAC est signataire de l'accord multilatéral de EA (European cooperation for Accreditation), ILAC (International Laboratory Accreditation Forum) de reconnaissance de l'équivalence des rapports d'analyses.

L'accréditation du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation, identifiés par le symbole #.

Les paramètres sous-traités sont identifiés par (*).

Identification dossier: SLA23-14257 Réference contrat: SLAC22-1099 / SLAT23-3045

Identification échantillon :SLA2308-1178-1Doc Adm Client :Cde 23D000430Origine :Mairie Divonne

Forage Mélodie

Point Client: EP35

Département/Commune : 01 / DIVONNE LES BAINS

Nature: Eau thermale au point d'usage

_

Prélèvement : Prélevé le 22/08/2023 à 10h28 Réceptionné le 22/08/2023 à 17h15

Prélevé par / Savoie Labo - P. Garcia

Flaconnage SAVOIE LABO

Les données concernant la réception, la conservation, le traitement analytique de l'échantillon et les incertitudes de mesure sont consultables au laboratoire. Les résultats précédés du signe < correspondent aux limites de quantification. Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. (incertitudes établies par le laboratoire et communiquées sur demande).

Ce rapport annule et remplace tout rapport partiel émis précédemment.

Les informations fournies par le client sont de sa seule responsabilité. Le laboratoire n'est pas responsable de la validité des informations transmises.

Date de début d'analyse le 22/08/2023 à 17h34

Paramètres analytiques	Résultats	Unités	Méthodes	Normes	Limites de qualité	Références de qualité	COFRAC
Analyses microbiologiques Legionella spp	< 10	UFC/I	Filtration	NF T90-431			#
Coliformes	< 1	UFC/250 ml	Filtration	NF EN ISO 9308-1 (2000)			#
dont Legionella pneumophila	< 10	UFC/I	Filtration	NF T90-431			#
Escherichia coli	< 1	UFC/250 ml	Filtration	NF EN ISO 9308-1 (2000)			#
Microorganismes aérobies à 36°C	1	UFC/ml	Incorporation	NF EN ISO 6222			#
Pseudomonas aeruginosa	< 1	UFC/250 ml	Filtration	NF EN ISO 16266			#
Spores d'Anaérobies Sulfito-Réducteurs	<1	UFC/50 ml	Filtration	NF EN 26461-2			#

.../...

Rapport d'analyse Page 2 / 10

Edité le : 18/09/2023

Identification échantillon : SLA2308-1178-1 Destinataire : Mairie Divonne les Bains

Paramètres analytiques	Résultats	Unités	Méthodes	Normes	Limites de qualité	Références de qualité	COFRAC
Analyses physicochimiques							T
Analyses physicochimiques de base							
Conductivité électrique (corrigée à 25°C par compensation)	460	μS/cm	Conductimétrie	NF EN 27888			
Pesticides							
Total pesticides							
Somme des pesticides identifiés (*)	<500	ng/l	Calcul				
Pesticides azotés							
Amétryne (*)	< 5.0	ng/l	GC/MS/MS après	Méthode interne M_ET172			
Atrazine (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Atrazine 2-hydroxy (*)	< 50	ng/l	extraction SPE HPLC/MS/MS après	Méthode interne M_ET109			
Atrazine déisopropyl (*)	< 5.0	ng/l	injection directe GC/MS/MS après	et M_ET211 Méthode interne M_ET172			
Atrazine déséthyl (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Atrazine déséthyl 2-hydroxy (*)	< 50	ng/l	extraction SPE HPLC/MS/MS après	Méthode interne M_ET109			
Atrazine déséthyl désisopropyl (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET108			
Cybutryne (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Desmetryne (*)	< 5.0	ng/l	injection directe GC/MS/MS après	et M_ET211 Méthode interne M_ET172			
	< 5.0	-	extraction SPE				
Hexazinone (*)		ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Mesotrione (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			
Metamitrone (*)	< 10.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Metribuzine (*)	< 5.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Prometryne (*)	< 5.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Propazine (*)	< 5.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Pymetrozine (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			
Simazine (*)	< 5.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Simazine 2-hydroxy (*)	< 50	ng/l	HPLC/MS/MS après	Méthode interne M_ET109			
Sulcotrione (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Terbumeton (*)	< 5.0	ng/l	injection directe GC/MS/MS après	et M_ET211 Méthode interne M_ET172			
Terbuméton déséthyl (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Terbuthylazine (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Terbuthylazine déséthyl (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Terbuthylazine déséthyl 2-hydroxy (*)	< 100	ng/l	extraction SPE HPLC/MS/MS après	Méthode interne M_ET109			
Terbutryne (*)	< 5.0	ng/l	injection directe GC/MS/MS après	et M_ET211 Méthode interne M_ET172			
			extraction SPE				
Pesticides organochlorés							

Rapport d'analyse Page 3 / 10

Edité le : 18/09/2023

Identification échantillon : SLA2308-1178-1 Destinataire : Mairie Divonne les Bains

Paramètres analytiques	Résultats	Unités	Méthodes	Normes	Limites de qualité	Références de qualité	COFRAC
2,4'-DDD (*)	< 5.0	ng/l	GC/MS/MS après	Méthode interne M_ET172			Г
2,4'-DDE (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
2,4'-DDT (*)	< 10.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
4,4'-DDD (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
4,4'-DDE (*)	< 10.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
4,4'-DDT (*)	< 10.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Aldrine (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Dicofol (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Dieldrine (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Endosulfan alpha (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Endosulfan béta (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Endosulfan total (alpha+beta) (*)	<5	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
HCH alpha (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
HCH béta (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
HCH delta (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Heptachlore (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Heptachlore époxyde (*)	<5	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Heptachlore époxyde endo trans (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Heptachlore époxyde exo cis (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Hexachlorobutadiene (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Lindane (HCH gamma) (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Methoxychlor (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Somme des isomères de l'HCH (sauf HCH epsilon) (*)	< 5	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Proticidas aurorantes abrarás			extraction SPE				
Pesticides organophosphorés Chlorfenvinphos (*)	< 5.0	ng/l	GC/MS/MS après	Méthode interne M_ET172			
Chlorpyriphos éthyl (*)	< 5.0		extraction SPE GC/MS/MS après				
		ng/l	extraction SPE	Méthode interne M_ET172			
Chlorpyriphos méthyl (*)	< 5.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Demeton S methyl sulfone (*)	< 10.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Diazinon (*)	< 5.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Dichlorvos (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108 et M_ET211			
Malathion (*)	< 5.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Oxydemeton méthyl (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108 et M_ET211			
Parathion éthyl (parathion) (*)	< 10.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Parathion méthyl (*)	< 5.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			

Rapport d'analyse Page 4 / 10

Edité le : 18/09/2023

Identification échantillon : SLA2308-1178-1 Destinataire : Mairie Divonne les Bains

Paramètres analytiques	Résultats	Unités	Méthodes	Normes	Limites de qualité	Références de qualité	COFRAC
Phosalone (*)	< 5.0	ng/l	GC/MS/MS après	Méthode interne M_ET172			Г
Phosmet (*)	< 50	ng/l	extraction SPE HPLC/MS/MS après	Méthode interne M_ET108			
Pyrimiphos éthyl (*)	< 5.0	ng/l	injection directe GC/MS/MS après extraction SPE	et M_ET211 Méthode interne M_ET172			
Carbamates							
Aldicarbe (*)	< 50	ng/l	HPLC/MS/MS après	Méthode interne M_ET108			
Asulame (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET256			
Benfuracarbe (*)	< 50	ng/l	extr. SPE HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Carbaryl (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET108			
Carbendazime (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET108			
Carbofuran (*)	< 50	ng/l	injection directe HPLC/MS/MS après injection directe	et M_ET211 Méthode interne M_ET108 et M_ET211			
Chinométhionate (*)	< 5.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Chlorprofam (*)	< 5.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Fenoxycarbe (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108 et M_ET211			
odocarbe (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108 et M_ET211			
Molinate (*)	< 5.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Pirimicarbe (*)	< 50	ng/l	HPLC/MS/MS après	Méthode interne M_ET108			
Propamocarbe (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET108			
Prosulfocarbe (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET108			
Pyraclostrobine (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Thiodicarbe (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET108			
Friallate (*)	< 5.0	ng/l	injection directe GC/MS/MS après extraction SPE	et M_ET211 Méthode interne M_ET172			
Néonicotinoides							
Acetamipride (*)	< 50	ng/l	HPLC/MS/MS après	Méthode interne M_ET109			
Clothianidine (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET108 et M_ET211			
midaclopride (*)	< 50	ng/l	injection directe HPLC/MS/MS après	Méthode interne M_ET109			
Thiamethoxam (*)	< 50	ng/l	injection directe HPLC/MS/MS après injection directe	et M_ET211 Méthode interne M_ET108 et M_ET211			
Amides et chloroacétamides			.,,				
Alachlore (*)	< 5.0	ng/l	GC/MS/MS après	Méthode interne M_ET172			
Alachlore-OXA (*)	< 50	ng/l	extraction SPE HPLC/MS/MS après	Méthode interne M_ET249			
Boscalid (*)	< 50	ng/l	extr. SPE HPLC/MS/MS après	Méthode interne M_ET108			
Cyflufenamide (*)	< 50.0	ng/l	injection directe GC/MS/MS après	et M_ET211 Méthode interne M_ET172			
Dimetachlore (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Dimethenamide (dont dimethenamide-P) (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après extraction SPE	Méthode interne M_ET172			

Rapport d'analyse Page 5 / 10

Edité le : 18/09/2023

Identification échantillon : SLA2308-1178-1 Destinataire : Mairie Divonne les Bains

Paramètres analytiques	Résultats	Unités	Méthodes	Normes	Limites de qualité	Références de qualité	COFRAC
Flufenacet (flurthiamide) (*)	< 50	ng/l	HPLC/MS/MS après	Méthode interne M_ET109			
Isoxaben (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Isoxaflutole (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Mandipropamide (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET108			
Metalaxyl (dont metalaxyl-M) (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Métazachlor (*)	< 5.0	ng/l	injection directe GC/MS/MS après	et M_ET211 Méthode interne M_ET172			
Métolachlor (dont S-metolachlor) (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Metolachlor-ESA (metolachlor ethylsulfonic acid) (*)	< 50	ng/l	extraction SPE HPLC/MS/MS après	Méthode interne M_ET249			
Metolachlor-OXA (metolachlor oxalinic acid) (*)	< 50	ng/l	extr. SPE HPLC/MS/MS après	Méthode interne M_ET249			
Napropamide (*)	< 5.0	ng/l	extr. SPE GC/MS/MS après	Méthode interne M_ET172			
Oxadixyl (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Propyzamide (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Tebutam (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M ET172			
()	10.0	l iig/i	extraction SPE	Wiedliede Interne M_E1172			
Ammoniums quaternaires							
Chlorméquat (*)	< 50	ng/l	HPLC/MS/MS injection directe	Méthode interne M_ET055 et M_ET211			
Mépiquat (*)	< 50	ng/l	HPLC/MS/MS injection directe	Méthode interne M_ET055 et M_ET211			
Anilines			,	-			
Benfluraline (*)	< 5.0	ng/l	GC/MS/MS après	Méthode interne M_ET172			
Oryzalin (*)	< 100	ng/l	extraction SPE HPLC/MS/MS après	Méthode interne M_ET109			
Pendimethaline (*)	< 5.0	ng/l	injection directe GC/MS/MS après	et M_ET211 Méthode interne M_ET172			
Trifluraline (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Azoles			extraction SPE				
Cyproconazole (*)	< 5.0	ng/l	GC/MS/MS après	Méthode interne M_ET172			
Difenoconazole (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Epoxyconazole (*)	< 5.0	1	extraction SPE	Méthode interne M_ET172			
		ng/l	GC/MS/MS après extraction SPE	_			
Fenbuconazole (*)	< 5.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Flusilazole (*)	< 5.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Imazalil (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			
Ipconazole (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			
Metconazole (*)	< 5.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Myclobutanil (*)	< 5.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Paclobutrazole (*)	< 5.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Prochloraze (*)	< 10.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			

Rapport d'analyse Page 6 / 10

Edité le : 18/09/2023

Identification échantillon : SLA2308-1178-1 Destinataire : Mairie Divonne les Bains

Paramètres analytiques	Résultats	Unités	Méthodes	Normes	Limites de qualité	Références de qualité	COFRAC
Propiconazole (*)	< 5.0	ng/l	GC/MS/MS après	Méthode interne M_ET172			Γ
Prothioconazole (*)	< 100	ng/l	extraction SPE HPLC/MS/MS après	Méthode interne M_ET109			
Tebuconazole (*)	< 5.0	ng/l	injection directe GC/MS/MS après	et M_ET211 Méthode interne M_ET172			
Tebufenpyrad (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Tetraconazole (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Thiabendazole (*)	< 50	ng/l	extraction SPE HPLC/MS/MS après	Méthode interne M_ET108			
Triticonazole (*)	< 50	ng/l	injection directe HPLC/MS/MS après injection directe	et M_ET211 Méthode interne M_ET109 et M_ET211			
Benzonitriles							
Aclonifen (*)	< 5.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Bromoxynil (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			
Bromoxynil-octanoate (*)	< 10.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Chloridazone (*)	< 5.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Dichlobenil (*)	< 5.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Diazines							
Bentazone (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			
Dicarboxymides							
Iprodione (*)	< 10.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Phénoxyacides							
2,4-D (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			
2,4-DP (dichlorprop) total (dont dichlorprop-P) (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			
2,4-MCPA (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			
2,4-MCPB (*)	< 50	ng/l	HPLC/MS/MS après	Méthode interne M_ET109 et M_ET211			
Clodinafop-propargyl (*)	< 50	ng/l	injection directe HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			
Dicamba (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			
Fluazifop (*)	< 50	ng/l	HPLC/MS/MS après	Méthode interne M_ET109 et M_ET211			
Fluazifop-butyl (dont fluazifop-P-butyl) (*)	< 50	ng/l	injection directe HPLC/MS/MS après	Méthode interne M_ET109			
Fluroxypyr (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Haloxyfop (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
MCPP (Mecoprop) total (dont MCPP-P) (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Quizalofop (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Triclopyr (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Phénols			injection directe	et M_ET211			
Dinoseb (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			

Rapport d'analyse Page 7 / 10

Edité le : 18/09/2023

Identification échantillon : SLA2308-1178-1 Destinataire : Mairie Divonne les Bains

Résultats	Unités	Méthodes	Normes	Limites de qualité	Références de qualité	COFRAC
< 50	ng/l	HPLC/MS/MS après	Méthode interne M_ET109			Γ
< 50	ng/l	HPLC/MS/MS après	Méthode interne M_ET109			
< 60	ng/l	HPLC/MS/MS après	Méthode interne M_ET109			
		injection directe	et M_ET211			
< 5.0	ng/l	GC/MS/MS après	Méthode interne M ET172			
	1	extraction SPE				
		extraction SPE				
	1	extraction SPE				
< 5.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
< 5.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
< 5.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
< 10.0	ng/l	GC/MS/MS après	Méthode interne M_ET172			
< 5.0	ng/l	GC/MS/MS après	Méthode interne M_ET172			1
< 5.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
< 50	ng/l	HPLC/MS/MS après	Méthode interne M_ET109			
< 5.0	ng/l	GC/MS/MS après	et M_ET211 Méthode interne M_ET172			
< 50	ng/l	extraction SPE HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			
< 5.0	ng/l	GC/MS/MS après	Méthode interne M_ET172			
< 100	ng/l	extraction SPE HPLC/MS/MS après	Méthode interne M_ET261			
< 50	ng/l	extr. SPE HPLC/MS/MS après	Méthode interne M_ET130			
< 50		injection directe	Méthode interne M FT143			
< 5.0	ng/l	GC/MS/MS après	Méthode interne M_ET172			
< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
< 5.0	ng/l	GC/MS/MS après	Méthode interne M_ET172			
< 50	ng/l	extraction SPE HPLC/MS/MS après	Méthode interne M_ET109			
< 10.0	ng/l	injection directe GC/MS/MS après	et M_ET211 Méthode interne M_ET172			
< 50	ng/l	extraction SPE HPLC/MS/MS après	Méthode interne M_ET108			
< 100	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
		injection directe	et M_ET211			
	1	extraction LL				
		extraction SPE				
	1	extr. SPE	et M_ET211			
< 50.0	ng/i	GC/MS/MS après extraction SPE	Methode interne M_ET172			
	< 50 < 60 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0 < 55.0	<pre></pre>		Injection directe	Section Sect	Section Sect

Rapport d'analyse Page 8 / 10

Edité le : 18/09/2023

Identification échantillon : SLA2308-1178-1 Destinataire : Mairie Divonne les Bains

Paramètres analytiques	Résultats	Unités	Méthodes	Normes	Limites de qualité	Références de qualité	COFRAC
Cycloxydime (*)	< 50	ng/l	HPLC/MS/MS après	Méthode interne M_ET109			_
Cymoxanil (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET108 et M_ET211			
Cyprodinil (*)	< 5.0	ng/l	injection directe GC/MS/MS après	Méthode interne M_ET172			
Diflufenican (Diflufenicanil) (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Dimethomorphe (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Ethofumesate (*)	< 5.0	ng/l	GC/MS/MS après	Méthode interne M_ET172			
Fenpropidine (*)	< 50.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Fenpropimorphe (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Fipronil (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Flonicamid (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Florasulam (*)	< 50	ng/l	extraction SPE HPLC/MS/MS après	Méthode interne M_ET109			
Fludioxonil (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Flurochloridone (*)	< 5.0	ng/l	injection directe GC/MS/MS après	et M_ET211 Méthode interne M_ET172			
Flurtamone (*)	< 50	ng/l	extraction SPE HPLC/MS/MS après	Méthode interne M_ET109			
Flutolanil (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Fosetyl aluminium (*)	<199	ng/l	injection directe HPIC/MS/MS après	et M_ET211 Méthode interne M_ET116			
Glufosinate (*)	< 50	ng/l	injection directe HPLC/FLD	et M_ET211 Méthode interne M_ET143			
Glyphosate (incluant le sulfosate) (*)	< 50	ng/l	HPLC/FLD	Méthode interne M_ET143			
Imazamox (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108 et M_ET211			
Imazapyr (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108 et M_ET211			
Isoxadifen-éthyl (*)	< 5.0	ng/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172			
Lenacile (*)	< 5.0	ng/l	GC/MS/MS après	Méthode interne M_ET172			
Mefenpyr diethyl (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Metrafenone (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Norflurazon (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Norflurazon désméthyl (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Oxadiazon (*)	< 5.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Oxyfluorfene (*)	< 10.0	ng/l	extraction SPE GC/MS/MS après	Méthode interne M_ET172			
Penoxsulam (*)	< 50	ng/l	extraction SPE HPLC/MS/MS après	Méthode interne M_ET108			
Picloram (Tordon K) (*)	< 100	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET256			
Picolinafen (*)	< 50	ng/l	extr. SPE HPLC/MS/MS après	et M_ET211 Méthode interne M_ET108			
Pinoxaden (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Proquinazid (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET108			
Pyrimethanil (*)	< 5.0	ng/l	injection directe GC/MS/MS après extraction SPE	et M_ET211 Méthode interne M_ET172			

Rapport d'analyse Page 9 / 10

Edité le : 18/09/2023

Identification échantillon : SLA2308-1178-1 Destinataire : Mairie Divonne les Bains

Paramètres analytiques	Résultats	Unités	Méthodes	Normes	Limites de qualité	Références de qualité	COFRAC
Quinmerac (*)	< 50	ng/l	HPLC/MS/MS après	Méthode interne M_ET109			T
Quinoxyfène (*)	< 5.0	ng/l	injection directe GC/MS/MS après	et M_ET211 Méthode interne M_ET172			
Silthiopham (*)	< 100	ng/l	extraction SPE HPLC/MS/MS après	Méthode interne M_ET108			
Spiroxamine (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Thiencarbazone-méthyl (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET108			
Thiophanate-méthyl (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET108			
Trinexapac-éthyl (*)	< 50	ng/l	injection directe HPLC/MS/MS après injection directe	et M_ET211 Méthode interne M_ET108 et M_ET211			
Urées substituées							
Amidosulfuron (*)	< 50	ng/l	HPLC/MS/MS après	Méthode interne M_ET109			
Chlorfluazuron (*)	< 10.0	ng/l	injection directe GC/MS/MS après extraction SPE	et M_ET211 Méthode interne M_ET172			
Chlorotoluron (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			
DCPMU (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			
DCPU (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			
Diffubenzuron (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			
Dimefuron (*)	< 50	ng/l	HPLC/MS/MS après	Méthode interne M_ET109 et M_ET211			
Diuron (*)	< 50	ng/l	injection directe HPLC/MS/MS après	Méthode interne M_ET109			
Ethidimuron (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Fenuron (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Flazasulfuron (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Flufenoxuron (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Fluometuron (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Flupyrsulfuron-méthyl (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Foramsulfuron (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Hexaflumuron (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
lodosulfuron méthyl (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
isoproturon (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Linuron (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Mesosulfuron methyl (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Methabenzthiazuron (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Metobromuron (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Metsulfuron méthyl (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Monolinuron (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
Nicosulfuron (*)	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			
	< 50	ng/l	injection directe HPLC/MS/MS après	et M_ET211 Méthode interne M_ET109			

Rapport d'analyse Page 10 / 10

Edité le : 18/09/2023

Identification échantillon : SLA2308-1178-1 Destinataire : Mairie Divonne les Bains

Doc Adm Client : Cde 23D000430

Paramètres analytiques	Résultats	Unités	Méthodes	Normes	Limites de qualité	Références de qualité	COFRAC
Rimsulfuron (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			
Sulfosulfuron (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			
Tebuthiuron (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			
Teflubenzuron (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			
Thiazafluron (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			
Thifensulfuron méthyl (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			
Tribenuron-méthyl (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			
Triflumuron (*)	< 50	ng/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109 et M_ET211			

ABSENCE DU LOGO COFRAC

Legionella non détectées

François GENET Responsable Laboratoire

¹ L'absence du logo Cofrac provient d'un délai de mise en analyse par rapport au prélèvement supérieur aux exigences normatives.